Internal combustion engines provide outstanding drivability and durability, with more than 250 million highway transportation vehicles in the United States relying on them. Along with gasoline or diesel, they can also utilize renewable or alternative fuels (e.g., natural gas, propane, biodiesel, or ethanol). They can also be combined with hybrid electric powertrains to increase fuel economy or plug-in hybrid electric systems to extend the range of hybrid electric vehicles. HOW DOES AN INTERNAL COMBUSTION ENGINE WORK? Combustion, also known as burning, is the basic chemical process of releasing energy from a fuel and air mixture. In an internal combustion engine (ICE), the ignition and combustion of the fuel occurs within the engine itself. The engine then partially converts the energy from the combustion to work. The engine consists of a fixed cylinder and a moving piston. The expanding combustion gases push the piston, which in turn rotates the crankshaft. Ultimately, through a system of gears in the powertrain, this motion drives the vehicle’s wheels. There are two kinds of internal combustion engines currently in production: the spark ignition gasoline engine and the compression ignition diesel engine. Most of these are four-stroke cycle engines, meaning four piston strokes are needed to complete a cycle. The cycle includes four distinct processes: intake, compression, combustion and power stroke, and exhaust. Spark ignition gasoline and compression ignition diesel engines differ in how they supply and ignite the fuel. In a spark ignition engine, the fuel is mixed with air and then inducted into the cylinder during the intake process. After the piston compresses the fuel-air mixture, the spark ignites it, causing combustion. The expansion of the combustion gases pushes the piston during the power stroke. In a diesel engine, only air is inducted into the engine and then compressed. Diesel engines then spray the fuel into the hot compressed air at a suitable, measured rate, causing it to ignite. IMPROVING COMBUSTION ENGINES Over the last 30 years, research and development has helped manufacturers reduce ICE emissions of criteria pollutants, such as nitrogen oxides (NOx) and particulate matter (PM) by more than 99% to comply with EPA emissions standards. Research has also led to improvements in ICE performance (horsepower and 0-60 mph acceleration time) and efficiency, helping manufacturers maintain or increase fuel economy.
top of page
EXPLORE & LEARN: THE BLOGS
Mechanical Power Transmission
Power transmission is a process required in almost every piece of machinery. From the tiny motors in pop-up selfie cameras to the innovative transmission lines of the Large Hadron Collider, power transmission applications are all around us. We use power transmission methods to transmit power from the prime mover to the driven machinery for its function. There are four main types of power transmission – mechanical, electric, hydraulic and pneumatic. In this article,
Pour tester cette fonctionnalité, accédez à votre site en ligne.
INTERNAL COMBUSTION ENGINE |WORKING | IMPROVISATION
INTERNAL COMBUSTION ENGINE |WORKING | IMPROVISATION
0 commentaire
J'aime
Commentaires
bottom of page